Clean Master® Multiple - Classic

Multiple Master Media Filter

Features & Benefits

Standard Epoxy Coating for Protection from Corrosion

Coated with more than 70 micron thick light blue coloured epoxy powder from both inside and outside surface for protection against corrosion and weather effects

Innovative Candle Assembly

Innovative Candle assembly provided to pass filtered water in system

Unique Manifold Design

Unique design of manifold for single tank unit facilitates flushing with filtered water

Various Connection Options Available

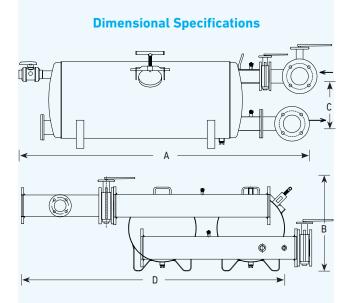
Threaded connection, Flanged connection or Easy Fix™ connection available

High Quality Silica Sand as Media

Filtration media is crushed silica sand/quartz gravel of particle size 1 mm to 2 mm (0.039 to 0.078 inch)

Various Options for Backwash

Available in manual, semi automatic or fully automatic backwash options


Clean Master® Multiple - Classic

Additional Features

- Manufactured from mild steel as per international fabrication standards.
- Designed for uniform distribution of incoming raw water over the media bed which ensures very effective filtration & backwash.
- Effective filtration of 100 micron (200 mesh).
- High filtration efficiency due to uniform grade of filtration media (silica sand / quartz gravel) and specially designed outlet candles.
- Maximum pressure rating 10 kg/cm² (142 psi).
- Clean-Master can also be supplied with stainless steel body.
- Optional multi tank modules for higher filtration capacities available.

Applications

• For filtration of water in micro irrigation systems to prevent clogging due to physical and biological impurities.

Nominal Flow Rate		Α	В	С	D		
m³/hr	gpm	mm	mm	mm	mm		
80	362	1615	500	310	1750		
100	440	1615	600	370	1850		
120	528	1615	500	310	2600		
150	600	1615	600	370	2800		

Technical Specifications

Nominal Flow Rate		Connection		Flow per	Back Wash	0	n4i4.	Cross Weight of Tonk			
		Inlet/ Outlet	Back Wash /By Pass	unit area Flow		of N	ntity ledia	Gross Weight of Tank (without manifold & media)			
m³/hr	gpm	inch	inch	m³/hr/m²	m³/hr	kg	lbs	kg	kg lbs		
80	362	4"	1 1/2"	69	24	400	881	133	293		
100	440	4"	2"	71	32	600	1322	160	352		
120	528	6"	2"	69	24	600	1322	200	440		
150	600	6"	2"	71	32	900	1984	240	529		

Clean Pressure Drop Chart

Size	Flow	К	K m					Pressure Drop(kg/cm²) w.r.t. Flow (m³/hr)								
inch	m³/hr			60	70	80	90	100	110	120	130	140	150	160	180	200
4	80	0.043	0.023	0.17	0.21	0.27	0.33	0.42	0.53	0.66	0.83	1.05	1.32	1.66	2.62	4.14
4	100	0.029	0.021	0.10	0.12	0.15	0.19	0.23	0.28	0.35	0.43	0.53	0.65	0.8	1.21	1.84
6	120	0.032	0.018	0.09	0.11	0.13	0.16	0.19	0.23	0.27	0.33	0.39	0.47	0.56	0.80	1.14
6	150	0.024	0.015	0.06	0.07	0.08	0.09	0.11	0.12	0.14	0.17	0.19	0.22	0.26	0.35	0.46

Governing equation, $h = k e^{m \chi}$; $h = Pressure drop (kg/cm^2)$; $\chi = Flow rate (m^3/hr)$; K = Pressure drop constant; m = Flow constant (for k & m value refer table)

Note: Filters are tested under standard laboratory test conditions.

