Jain Hydrocyclone Filter- Classic

Conical Hydrodynamic Sand Separator

Features & Benefits

Innovative Conical Filter Design

Hydrodynamically designed to create maximum centrifugal action to separate particles heavier than water

Standard Pure Polyester / Epoxy coating for Protecting from Corrosion

Coated up to 150 micron thick deep blue colored pure Polyester powder on outer surface & Epoxy coating from inner side for protection against corrosion and weather effects

Angular Inlet & Outlet Connection

Angular inlet / outlet connection provides easiness for installation

Various Connection Options Available

Threaded connection, Flanged connection or Easy Fix™ connection available

Special Rubber Cone

Special rubber cone is provided at the bottom of the cone to prevent wearing

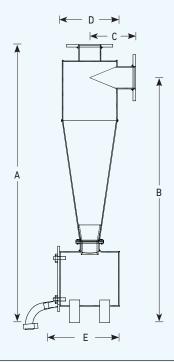
Draining Facility Available

Drain valve position on upper & lower sides of the body provides installation flexibility

Jain Hydrocyclone Filter- Classic

Additional Features

- Mild steel construction.
- Efficiently removes fine sand and silt particles of size higher than 75 microns and specific gravity more than 2.65.
- Dirt can be easily flushed out through dirt collection chamber.
- Available in maximum operating pressure of 10 kg/cm² (142 psi).
- Recommended to install before media/screen filters to remove particles heavier than water.
- Improves operational efficiency & life of media / screen filters
- Can also be supplied in stainless steel as a special order.
- Can be supplied in higher flow capacities in multiple batteries option.


Applications

 Used in micro irrigation systems to remove sand and silt particles from irrigation water.

Technical Specifications

Nominal Flow Rate		Inlet/ Outlet Connection	Vol.of coll. chamber	Gross Weight			
m³/hr	gpm	inch	litres	kg	lbs		
25	110	2"	6.0	20	44		
40	176	2½"	12.0	26	57		
40	220	3"	12.0	28	62		
50	352	3"	12.0	25	55		

Dimensional Specifications

Nominal I	Flow Rate	Α	В	С	D	E
m³/hr	gpm	mm	mm	mm	mm	mm
25	110	780	650	190	220	350
40	176	975	845	180	220	300
40	220	1110	980	180	220	300
50	352	1110	980	180	220	300

Clean Pressure Drop Chart

Size	Flow	к	1/	14		И					Pressure Drop(kg/cm²) w.r.t. Flow (m³/hr)							
inch	m³/hr		m	5	10	15	20	25	30	40	50	60	70	80	90	100		
2	25	0.047	0.078	0.07	0.10	0.15	0.23	0.34	0.50	1.09	2.38	-	-	-	-	-		
21/2	40	0.075	0.039	0.09	0.11	0.13	0.16	0.2	0.24	0.36	0.53	0.79	1.17	1.73	2.56	3.79		
3	40	0.013	0.063	0.02	0.02	0.03	0.04	0.06	0.09	0.16	0.30	0.57	1.07	1.99	3.73	6.97		
3	50	0.037	0.043	0.05	0.06	0.07	0.08	0.11	0.13	0.20	0.31	0.47	0.72	1.1	1.69	2.59		

Governing equation, $h = k e^{m \chi}$; $h = Pressure drop (kg/cm^2)$; $\chi = Flow rate (m^3/hr)$; K = Pressure drop constant; m = Flow constant (for k & m value refer table)

Note: Filters are tested under standard laboratory test conditions.

