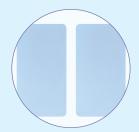
# L Disclean® ML - Classic

Precise 3D Filtration




### **Features & Benefits**



#### Radially Convergent Grooved Discs

Disclean® element with strong, precision engineered and radially grooved disc to provide fine three dimensional filtration. (Flow direction Out to In)



#### Standard Epoxy Coating for Protection from Corrosion

Coated with more than 70 micron thick light blue coloured epoxy powder from both inside and outside surface for protection against corrosion and weather effects



#### **Special Filter Design**

Tangential inlet protects the screen from direct impact of sharp/angular particles



#### Various Connection Options Available

Threaded connection, Flanged connection or Easy Fix™ connection available



#### **Easy for Maintenance**

Strong and smooth opening and closing for cleaning disc element



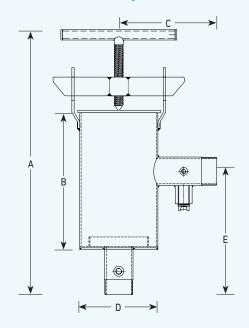
#### **Draining Facility Available**

Slant drain valve position at the bottom facilitates effective flushing

## L Disclean® ML - Classic

#### **Additional Features**

- Mild steel construction.
- Disc element construction allows easy cleaning under flowing water.
- Available in standard mesh of 100 micron size. (other mesh sizes available On demand).
- Flow direction from outside of the filtering element to inside. (Out to In)
- Maximum operating pressure 6 kg/cm² (142 psi).
- On demand, Disclean ML can also be supplied with automatic flushing option.
- Disclean ML filter can also be supplied with stainless steel body.
- Can be supplied in multiple batteries option.


#### **Applications**

Prevents irrigation system clogging from physical contaminants.system.

#### **Technical Specifications**

| Nominal<br>Flow Rate |     | Inlet/ Outlet<br>Connection | Screen<br>Surface Area | Gross<br>Weight |      |  |  |
|----------------------|-----|-----------------------------|------------------------|-----------------|------|--|--|
| m³/hr                | gpm | inch                        | m²                     | kg              | lbs  |  |  |
| 25                   | 110 | 2"                          | 0.095                  | 11              | 24.3 |  |  |
| 40                   | 176 | 2½"                         | 0.138                  | 13              | 28.7 |  |  |
| 40                   | 176 | 3"                          | 0.140                  | 13              | 29.1 |  |  |
| 50                   | 200 | 3"                          | 0.166                  | 14              | 30.9 |  |  |

#### **Dimensional Specifications**



| Nominal FI | ow Rate | Α   | В   | С   | D   | Е   |  |
|------------|---------|-----|-----|-----|-----|-----|--|
| m³/hr      | gpm     | mm  | mm  | mm  | mm  | mm  |  |
| 25         | 110     | 565 | 292 | 208 | 165 | 263 |  |
| 40         | 176     | 690 | 417 | 208 | 165 | 388 |  |
| 40         | 176     | 690 | 417 | 208 | 165 | 388 |  |
| 50         | 200     | 773 | 500 | 208 | 165 | 417 |  |

#### **Clean Pressure Drop Chart**

| Size | Flow  | и        |       |      |      |      |      | Pressure Drop (kg/cm²) - w.r.t. Flow (m³/hr) |      |      |      |      |      |      |      |      |
|------|-------|----------|-------|------|------|------|------|----------------------------------------------|------|------|------|------|------|------|------|------|
| inch | m³/hr | <b>^</b> | m     | 5    | 10   | 15   | 20   | 25                                           | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 100  |
| 2    | 25    | 0.011    | 0.091 | 0.02 | 0.03 | 0.04 | 0.07 | 0.11                                         | 0.17 | 0.41 | 1.02 | 2.53 | -    | -    | -    | -    |
| 21/2 | 40    | 0.028    | 0.040 | 0.03 | 0.04 | 0.05 | 0.06 | 0.08                                         | 0.09 | 0.14 | 0.21 | 0.31 | 0.46 | 0.68 | 1.02 | 1.52 |
| 3    | 40    | 0.023    | 0.044 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07                                         | 0.09 | 0.14 | 0.21 | 0.33 | 0.52 | 0.81 | 1.27 | 1.98 |
| 3    | 50    | 0.028    | 0.038 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07                                         | 0.09 | 0.12 | 0.18 | 0.26 | 0.39 | 0.56 | 0.82 | 1.19 |

Governing equation,  $h = k e^{m \chi}$ ;  $h = Pressure drop (kg/cm^2)$ ;  $\chi = Flow rate (m^3/hr)$ ; K = Pressure drop constant; m = Flow constant (for k & m value refer table)

Note: Filters are tested under standard laboratory test conditions.

